Models and methods for the solution of challenging optimization problems

Anno
2021
Proponente Giampaolo Liuzzi - Professore Associato
Sottosettore ERC del proponente del progetto
PE1_19
Componenti gruppo di ricerca
Componente Categoria
Marco Boresta Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca
Davide Merolla Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca
Alberto De Santis Componenti strutturati del gruppo di ricerca
Stefano Lucidi Componenti strutturati del gruppo di ricerca
Massimo Roma Componenti strutturati del gruppo di ricerca
Componente Qualifica Struttura Categoria
Marco Sciandrone Professore Ordinario Dipartimento di Ingegneria dell'Informazione, Università di Firenze Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca
Gianni Di Pillo Professore Emerito Dipartimento di Ingegneria Informatica Automatica Gestionale, "Sapienza" Università di Roma Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca
Veronica Piccialli Professore Ordinario Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma "Tor Vergata" Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca
Abstract

Many problems arising in the fields of engineering, management, machine learning give rise to specific optimization problems. To solve these problems, algorithms must be designed which are tailored to the peculiarities of the problem itself. To solve such problems, two main classes of algorithms are to be considered.
- Derivative-free methods
- Methods for large-scale optimization

"Derivative-free methods"
These methods do not require the use of any analytical expression of the objective and constraint functions of the problem. They are the methods of choice to solve simulation based optimization problems. Those complex problems that are characterized by the fact that there exists only a ¿black-box¿ (i.e. a simulation tool or an approximation technique) which computes objective and constraint functions value. In recent years, many derivative-free methods have been proposed for the solution of simulation-based problems that present specific difficulties or peculiarities. Among such features, it can be mentioned the fact that the values of the objective and constraint functions can be computed with different precision (fidelity) or that they are affected by random noise (following an unknown probability distribution); furthermore, some (or all) of the variables could be restricted to take integer values.

"Methods for large-scale optimization"
These class of methods is devoted to the solution of large-scale problems, i.e. those problems that have an (extremely) high number of variables and/or constraint functions. The recent developments in the field of data mining and machine learning require us to be able to deal with large scale problems in which the particular structure of the objective function make them very difficult to minimize. The proposed activity will study truncated Newton-type methods and how they can be adapted to take into account the previous computational difficulties.

ERC
PE1_19, PE1_20, PE6_7
Keywords:
OTTIMIZZAZIONE, PROGRAMMAZIONE MATEMATICA, APPRENDIMENTO AUTOMATICO

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma