Modelling complex systems in the digital era

Anno
2017
Proponente Vittorio Loreto - Professore Ordinario
Sottosettore ERC del proponente del progetto
Componenti gruppo di ricerca
Componente Categoria
Andrea Crisanti Componenti il gruppo di ricerca / Participants in the research project
Emanuele Caglioti Componenti il gruppo di ricerca / Participants in the research project
Angelo Vulpiani Componenti il gruppo di ricerca / Participants in the research project
Elena Agliari Componenti il gruppo di ricerca / Participants in the research project
Dario Benedetto Componenti il gruppo di ricerca / Participants in the research project
Componente Qualifica Struttura Categoria
Pietro Gravino Borsista Sapienza Univ. di Roma, Dip. Fisica Altro personale Sapienza o esterni / Other personnel Sapienza or other institution
Indaco Biazzo Borsista Sapienza Univ. di Roma, Dip. Fisica Altro personale Sapienza o esterni / Other personnel Sapienza or other institution
Elisabetta Falivene Assegnista di ricerca Sapienza Univ. di Roma, Dip. Fisica Altro personale Sapienza o esterni / Other personnel Sapienza or other institution
Bernardo Monechi Ricercatore Fondazione ISI, Torino Altro personale Sapienza o esterni / Other personnel Sapienza or other institution
Marco Baldovin Dottorando Sapienza Univ. di Roma, Dip. Fisica Altro personale Sapienza o esterni / Other personnel Sapienza or other institution
Fabio Cecconi Ricercatore CNR-ISC, Roma Altro personale Sapienza o esterni / Other personnel Sapienza or other institution
Massimo Cencini Ricercatore CNR-ISC, Roma Altro personale Sapienza o esterni / Other personnel Sapienza or other institution
Andrea Puglisi Ricercatore CNR-ISC, Roma Altro personale Sapienza o esterni / Other personnel Sapienza or other institution
Davide Vergni Ricercatore CNR-IAC, Roma Altro personale Sapienza o esterni / Other personnel Sapienza or other institution
Abstract

After Chris Anderson's statement: "The End of Theory: The Data Deluge Makes the Scientific Method Obsolete" published in Wired in 2008, a big discussion arose about the role of modelling schemes in the digital era. The Big Data paradigm, with its overwhelming impact on technology and science, proposes, in some sense, a purely inductive alternative to the physical, model-based, description of reality. It is thus very natural and important to raise the question, about the limits of such a description. In what circumstances can one learn (predict, extract-features, etc.) efficiently from the data without the use of models, theories or hierarchical hypotheses? What is behind the apparent success of tools like deep learning and what is its link with well-known theoretical tools, e.g., the renormalisation group? It is even more important to raise the question about the positive synergies that theoretical schemes and data can jointly trigger. The notable examples of weather forecast and epidemic spreading have proved that suitable data-driven computational schemes can effectively tame the high dimensionality embedding complex phenomena. Still the whole matter is far from being settled. This project aims at addressing this set of problems by blending in a unique effort several tools and approaches: dynamical systems and information theory, neural networks and machine learning approaches, data-driven modelling schemes. Several case studies will be considered in several areas: e.g., modelling and predicting social dynamics (opinions, mobility, information dynamics), statistical mechanics in "non standard" situations, i.e., systems far from equilibrium and/or without an Hamiltonian structure, modelling innovation dynamics, textual analysis and classification, extraction of features from images, etc.

ERC
Keywords:
name

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma