Unravelling a novel mechanism favoring brain insulin resistance development and its impact on Alzheimer disease neuropathology

Anno
2019
Proponente Eugenio Barone - Professore Ordinario
Sottosettore ERC del proponente del progetto
LS5_7
Componenti gruppo di ricerca
Componente Categoria
Marzia Perluigi Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Silvia Chichiarelli Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Carla Blarzino Componenti strutturati del gruppo di ricerca / Structured participants in the research project
Sara Pagnotta Dottorando/Assegnista/Specializzando componente non strutturato del gruppo di ricerca / PhD/Assegnista/Specializzando member non structured of the research group
Componente Qualifica Struttura Categoria
Antonella Tramutola Borsista Scienze Biochimiche "A. Rossi-Fanelli" Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca / Other aggregate personnel Sapienza or other institution, holders of research scholarships
Stefania Petrini Personale esterno Sapienza Ospedale pediatrico Bambin Gesù IRCSS Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca / Other aggregate personnel Sapienza or other institution, holders of research scholarships
D. Allan Butterfield Full Professor University of Kentucky (USA) Altro personale aggregato Sapienza o esterni, titolari di borse di studio di ricerca / Other aggregate personnel Sapienza or other institution, holders of research scholarships
Abstract

This project will clarify the molecular mechanisms involved in the onset of brain insulin resistance (IR) and its impact on Alzheimer disease (AD) neuropathology development. AD pathogenesis is complex and beyond amyloid hypothesis, AD has a "metabolic face" mediated by impairment of brain insulin signaling (IS), known as brain IR. Physiologically, the IS regulates the maintenance of synaptic plasticity, the cell stress response and the neuronal metabolism, which are processes central to cognitive and learning functions. Therefore, brain IR is thought to play a pivotal role in AD. However, there is still a substantial lack of knowledge on how brain IR develops. Our challenge is to "fill the gap" by dissecting the role of a novel mediator of the insulin signaling, the enzyme biliverdin reductase A (BVR-A), which we believe to be one of the proteins first impaired along the development of brain IR. To achieve this goal, we will feed C57Bl/6j mice a high fat diet (HFD), that promotes several molecular changes in the brain favoring the onset of brain IR and AD-like neuropathology. By following the temporal profile of these alterations, we will be able to define when the dysfunction of BVR-A occurs. To strengthen the role of BVR-A we will perform the same experiments in mice in which BVR-A has been genetically deleted. Results from this part will answer to the question whether the lack of BVR-A favors the onset of brain IR. Finally, HFD-treated mice will be treated with a peptide, which by stimulating BVR-A activity, should improve brain IS and thus recover mice from brain IR. The comprehension of the initiating molecular events leading to brain IR in AD is fundamental to develop new prevention strategies aimed to reduce the risks and the negative impact of metabolic alterations in the brain. BVR-A could become a novel therapeutic target with the potential to significantly impact on a big portion of the population with positive social and economic outcomes.

ERC
LS5_7, LS5_1, LS4_5
Keywords:
NEUROSCIENZE, BASI MOLECOLARI E CELLULARI DEI DIFETTI DEL METABOLISMO, BIOCHIMICA GENERALE E METABOLISMO, MALATTIE METABOLICHE, TRASDUZIONE DEI SEGNALI

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma