The general aim of our projects involves the characterization of cellular, molecular and functional aspects of muscle homeostasis and regeneration.
Specifically, our research focuses in three areas:
(1) Define the signals from the niche to improve muscle regeneration.
Muscle tissue possesses a stem cell compartment; nevertheless it is not clear why it fails to regenerate under pathological conditions. Either the resident stem cells are too rare or intrinsically incapable of repairing major damage, or perhaps the injured/pathological tissue is a prohibitive environment for stem cell activation and function. Our project aims to address this critical issue in sarcopenic muscle and different muscle diseases.
(2) The physiopathologic interplay between muscle and nerve.
The effective connection between muscle and nerve is crucial to the capacity of both partners to survive and function adequately throughout life. A crucial system severely affected in several neuromuscular diseases is the loss of effective connection between muscle and nerve, leading to a pathological non-communication between the two tissues. One of the best examples of impaired interplay between the nerve and muscle is observed in ALS. ALS is a disorder involving degeneration of motor neurons, muscle atrophy and paralysis. Whereas the steps leading to the pathological state are well characterized, several fundamental issues are still controversial: are the motor neurons the first and only targets of ALS? What is the contribution of muscle, if any, to the pathogenesis of ALS? These questions raised from the following considerations: i) ALS is a disease of genetic origin in which the contribution of cells and tissues other than neuronal cannot been excluded; ii) skeletal muscle, always considered just a target of the disease, is a relatively unexamined tissue that potentially directly contributes to ALS. Thus, analyzing the retrograde-talk muscle-to-nerve could be extremely important to determine if and to what degree muscle plays a role in the progression of the pathology and to develop alternative therapeutic approaches.
(3) Muscle engineered in vitro model to study muscle homeostasis and differentiation
In our laboratory it has been recently developed a 3-dimensional skeletal muscle construct, called eX-vivo Muscle engineered Tissue (X-MET), which mimics the complex morphological properties of skeletal muscle tissue and it represents an ideal in vitro model of skeletal muscle, simplifying the study of complex processes such as muscle homeostasis and response to drug treatment, under physiologic and pathologic conditions.
© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma