NONLINEAR PDEs in GEOMETRY AND PHYSICS
Componente | Categoria |
---|---|
Eugenio Montefusco | Componenti il gruppo di ricerca / Participants in the research project |
Andrea Sambusetti | Componenti il gruppo di ricerca / Participants in the research project |
Massimo Grossi | Componenti il gruppo di ricerca / Participants in the research project |
Alessandro Savo | Componenti il gruppo di ricerca / Participants in the research project |
Flavia Lanzara | Componenti il gruppo di ricerca / Participants in the research project |
Andrea Dall'Aglio | Componenti il gruppo di ricerca / Participants in the research project |
Componente | Qualifica | Struttura | Categoria |
---|---|---|---|
Giusi Vaira | Ricercatore | Università della Campania | Altro personale Sapienza o esterni / Other personnel Sapienza or other institution |
Francesca Gladiali | Ricercatore | Università di Sassari | Altro personale Sapienza o esterni / Other personnel Sapienza or other institution |
Benedetta Pellacci | Associato | Università Partenope di Napoli | Altro personale Sapienza o esterni / Other personnel Sapienza or other institution |
Isabella Ianni | Ricercatore | Università della Campania | Altro personale Sapienza o esterni / Other personnel Sapienza or other institution |
Pierpaolo Esposito | Associato | Università di Roma Tre | Altro personale Sapienza o esterni / Other personnel Sapienza or other institution |
Luca Battaglia | Ricercatore | Università di Roma Tre | Altro personale Sapienza o esterni / Other personnel Sapienza or other institution |
Erika Pieroni | Dottoranda | Università Sapienza | Altro personale Sapienza o esterni / Other personnel Sapienza or other institution |
Many physical principles are an expression of an underlying variational principle; Euler made the expansive statement that
``...nothing at all takes place in the universe in which some rule of the maximum or minimum does not appear.''
When the maximum or minimum is attained -- for example, when potential energy is minimized -- the physical law is also described by a partial differential equation, the Euler-Lagrange equation.
At the same time, physical laws often have a purely geometric description. Einstein's field equations of General Relativity prescribe the Ricci curvature tensor of space-time. Soap bubbles minimize area and therefore, in physical terms, are the least energy configuration.
This property is geometrically expressed by the fact that soap bubbles have constant mean curvature. However, the roundness of soap bubbles was proved by Alexandrov
using PDE techniques, i.e., by analyzing the Euler-Lagrange equation. Therefore, one is often compelled to view physical phenomena while wearing three hats: that of the physicist, the geometer, and the analyst.
The examples of the Einstein field equations and minimal surfaces are particularly instructive, because their study drove many of the developments in the existence
and regularity theory for nonlinear PDEs in the last century. The goal of our proposal will be to bring together researchers who are working PDEs with connections to differential geometry and mathematical physics.