Antonello Rizzi

Pubblicazioni

Titolo Pubblicato in Anno
Ottimizzazione di sistemi lightweight granular computing per la classificazione di grafi etichettati Memorie - XXXVI Riunione Nazionale dei Ricercatori di Elettrotecnica 2022
Calibrazione di un classificatore ad-hoc basato su tecniche di clustering e algoritmi evolutivi per la stima della probabilità di guasto su reti MT Memorie - XXXVI Riunione Nazionale dei Ricercatori di Elettrotecnica 2022
La teoria dei prototipi incontra il word embedding: un nuovo approccio per la categorizzazione del testo mediante il Granular Computing Memorie - XXXVI Riunione Nazionale dei Ricercatori di Elettrotecnica 2022
Modellamento data-driven dei fenomeni d’invecchiamento nelle batterie al litio ad alte prestazioni Memorie - XXXVI Riunione Nazionale dei Ricercatori di Elettrotecnica 2022
Synthesis of an Evolutionary Fuzzy Multi-objective Energy Management System for an Electric Boat Proceedings of the 14th International Joint Conference on Computational Intelligence, IJCCI 2022 2022
An enhanced filtering-based information granulation procedure for graph embedding and classification IEEE ACCESS 2021
Towards a class-aware information granulation for graph embedding and classification Studies in Computational Intelligence 2021
A physically inspired equivalent neural network circuit model for SoC estimation of electrochemical cells ENERGIES 2021
Detection and screening of COVID-19 through chest computed tomography radiographs using deep neural networks Data Science for COVID-19 2021
A multi-agent approach for graph classification Proceedings of the 13th International Joint Conference on Computational Intelligence - Volume 1: NCTA 2021
Relaxed dissimilarity-based symbolic histogram variants for granular graph embedding Proceedings of the 13th International Joint Conference on Computational Intelligence - Volume 1: NCTA 2021
A class-specific metric learning approach for graph embedding by information granulation APPLIED SOFT COMPUTING 2021
A Modular Autonomous Driving System for Electric Boats based on Fuzzy Controllers and Q-Learning Proceedings of the 13th International Joint Conference on Computational Intelligence - FCTA 2021
A novel algorithm for online inexact string matching and its FPGA implementation COGNITIVE COMPUTATION 2020
A white-box equivalent neural network circuit model for SoC estimation of electrochemical cells IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020
Supervised machine learning techniques and genetic optimization for occupational diseases risk prediction SOFT COMPUTING 2020
Metabolic networks classification and knowledge discovery by information granulation COMPUTATIONAL BIOLOGY AND CHEMISTRY 2020
Optimization strategies for microgrid energy management systems by genetic algorithms APPLIED SOFT COMPUTING 2020
Frame-by-frame Wi-Fi attack detection algorithm with scalable and modular machine-learning design APPLIED SOFT COMPUTING 2020
An infoveillance system for detecting and tracking relevant topics from italian tweets during the COVID-19 event IEEE ACCESS 2020

ERC

  • PE6_2
  • PE6_6
  • PE6_7
  • PE6_11
  • PE7_7
  • PE7_12

KET

  • Advanced manufacturing & processing
  • Big data & computing
  • Sustainable technologies & development

Interessi di ricerca

Non-linear circuits and systems, Soft  Computing,  Pattern Recognition, Computational  Intelligence, Granular Computing and Knowledge Discovery, Complex Systems modelling and control, Supervised  and unsupervised  data  driven  modeling  techniques,  neural  networks,  fuzzy systems, evolutionary  algorithms. Design  of  automatic  modeling  systems, clustering, classification, function approximation, prediction.Computational Intelligence techniques for Smart Grids and Micro Grids modelling, monitoring and control, Intelligent Systems for Sustainable Mobility, Energy Storage Systems modeling and control, Predictive Diagnostc systems for Condition Based Maintenance, Big Data for Industrial Applications, Classification and clustering systems in structured domains, Machine learning in non-metric spaces, graph  and sequence matching,  agent-based clustering and substructures mining, parallel and distributed computing. Machine learning for natural language processing, cybersecurity, bioinformatics, medical diagnosis.

Gruppi di ricerca

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma